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To study a multirate system, each subsystem can be solved by a dedidated sofware with respect to the physical problem and the
time constant. Then, the problem is the coupling of the solutions of the subsystems. The Waveform Relaxation Method (WRM) seems
to be an interesting solution for the coupling but it has been mainly applied on academic examples. In this communication, the WRM
method has been applied to perform the coupling of a controlled rectifier and a transformer modeled by a non-linear finite element
model.

Index Terms—Waveform relaxation method, multirate system, finite element method.

I. INTRODUCTION

ELECTRICAL system can involve several devices which
have different physics and dynamics. Each device can

be represented by a numerical model. To study the system,
the coupling of the numerical models is necessary. A strong
coupling of the subsystems involves a step time according to
the smallest time constant, and thus a long computation time.
Another approach is to use a weak coupling of the numerical
models. In this case, a dedicated sofware can be used for
each device with respect to its own time constant. To ensure a
consistent coupling, the waveform relaxation method (WRM)
can be investigated to solve this kind of problem [1], [2].
The WRM approach is an iterative process which converges
in theory to the solution of a strong coupling [3]. It should be
notice that this approach has been until now mainly applied to
study academic example.

In this communication, the WRM approach is applied to
study a realistic system involving its control loop, a single
phase transformer associated with a controlled rectifier. The
transformer is modeled by a non-linear finite element model
and the rectifier is controlled by a pulse width modulation
(PWM) technique. Each subsystem is studied with a time step
adapted to its time constant [4].

II. WAVEFORM RELAXATION METHOD

Let consider a device composed of r subsystems, each
subsystem i satisfying

ẏi(t) = fi(y(t), z(t)) (1)
0 = gi(y(t), z(t)), (2)

with t ∈ [0, T ] and the initial conditions y(0) = y0 and
z(0) = z0, y being the differential variables and z the algebraic
variables. The WRM computes iteratively an approximation(
ỹk(t), z̃k(t)

)
of the exact solution. The first step is the extrap-

olation step: for k = 0, ỹk(t) = y0, z̃k(t) = z0, ∀t ∈ [0, T ].
Then at the iteration k and for the subsystem i, the algorithm

solves

ẏi(t) = fi(Y
k
i (t),Zk

i (t)) (3)

0 = gi(Y
k
i (t),Zk

i (t)). (4)

The value of Yk
i (resp. Zk

i ) depends on ỹk−1 and ỹk (resp.
z̃k−1 and z̃k) and on the relaxation schemes (Picard, Jacobi
or Gauss-Seidel). For example, with the Gauss-Seidel scheme,
the subsystems are solved sequentially with

Yk
i (t) = [ỹk

1 , . . . , ỹ
k
i−1, ỹ

k
i , ỹ

k−1
i+1 , . . . , ỹ

k−1
r ]T, (5)

and
Zk

i (t) = [z̃k1 , . . . , z̃
k
i−1, z̃

k
i , z̃

k−1
i+1 , . . . , z̃

k−1
r ]T. (6)

Subsystems are solved on the overall time domain [0, T ],
then the waveforms are transfered from one subsystem to the
others. Each subsystem is solved with respect to its own time
step. Since the waveforms yi and zi of each subsystem are
sampled with different time steps, interpolation technic enables
to transfer the waveforms from one subsystem to another.

III. APPLICATION

Let us consider a transformer and its associated rectifier. The
rectifier is controlled to provide a direct voltage vc of 800 V
and a current is into the secondary winding in phase with the
nominal voltage v20; moreover, a current ich is imposed into
the rectifier circuit as a load current. The control based on a
PWM requires a very small time step ∆tr. The transformer
is modeled by a finite element (FE) method with a magnetic
vector potential formulation. The voltages v10 and vs are
respectively imposed to the primary and secondary windings.
The solution of the FE model using the time step ∆tr is
unfeasible in terms of computation time. The WRM allows
to use a bigger time step allowing to dramatically reduce the
computation time.

The WRM is applied to perform the coupling between the FE
model of the transformer and the circuit model of the rectifier.
A classic source coupling [5] does not allow to control the



current is into the secondary winding. Therefore, a coupling
parameter is used [6], [7]. A resistor R and an inductance
L are introduced into the rectifier circuit (Fig.1) to represent
a behaviour close to the transformer one. The resistance is
computed according to the resistivity and the length of the
winding, and the inductance by a calculation based on a linear
FE model of the transformer. Then a residual current source
ires is added in parallel (Fig. 1) to guarantee the consistency
of the coupling.
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Fig. 1. WRM split device

At each iteration k of the WRM process, the source of
the FE model is the voltage vks , and its solution provides the
current iks in the secondary winding. The voltage vks is given by
the solution of the rectifier model. In this model, the residual
current ikres is a source; the voltage vkdc is controlled to be
equal to 800 V and the current ik2 is also controlled to be
in phase with the nominal voltage v20. The residual current is
such that ikres = ik−1

s −ik−1
L . In this manner, over the iterations

of the WRM process, the current iks converges to ik2 . At the
end of the process, iks is in phase with the nominal voltage
v20. Fig. 2 presents the convergence criterion related to the
current is of the WRM process: the convergence is effective
after 4 iterations. According to the parameter coupling, the
current iks tends to be in phase with the nominal voltage v20
(Fig. 3). Furthermore, the voltage vdc is close to 800 V. Fig.
4 shows the current ip into the primary winding for linear or
non-linear FE model. In the non-linear model, the reluctivity
of the magnetic core depends on the magnetic field.
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Fig. 2. Convergence criterion of the WRM iteration.

The waveform relaxation method is well-adapted to the
coupling and the simulation of multirate systems. It allows

−800

−600

−400

−200

 0

 200

 400

 600

 800

 0.1  0.105  0.11  0.115  0.12  0.125  0.13  0.135  0.14  0.145  0.15

−800

−600

−400

−200

 0

 200

 400

 600

 800

cu
rr

en
t 
i s 

(A
)

v
o
lt

ag
e 
v 2

0
 (

V
)

time t (s)

is
0

is
1

is
2

v
20

Fig. 3. Current iks into the secondary winding with respect to the WRM
iteration and nominal voltage v20.
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Fig. 4. Current ip into the primary winding for linear and non-linear finite
element model.

to use a time discretisation per subsystem. Considering the
parameter coupling, the output current of a finite element
model can be controlled whereas this model is not into the
controlled circuit model. Moreover, the finite element model
can be linear as well as non linear without changing into the
coupling.
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